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a b s t r a c t 

We point out the existence of a transition from partial to global generalized synchronization (GS) in sym- 

metrically coupled structurally different time-delay systems of different orders using the auxiliary system 

approach and the mutual false nearest neighbor method. The present authors have recently reported 

that there exists a common GS manifold even in an ensemble of structurally nonidentical scalar time- 

delay systems with different fractal dimensions and shown that GS occurs simultaneously with phase 

synchronization (PS). In this paper we confirm that the above result is not confined just to scalar one- 

dimensional time-delay systems alone but there exists a similar type of transition even in the case of 

time-delay systems with different orders. We calculate the maximal transverse Lyapunov exponent to 

evaluate the asymptotic stability of the complete synchronization manifold of each of the main and the 

corresponding auxiliary systems, which in turn ensures the stability of the GS manifold between the main 

systems. Further we estimate the correlation coefficient and the correlation of probability of recurrence to 

establish the relation between GS and PS. We also calculate the mutual false nearest neighbor parameter 

which doubly confirms the occurrence of the global GS manifold. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

During the past couple of decades, the phenomenon of chaos

ynchronization has been extensively studied in coupled nonlinear

ynamical systems from both theoretical and application perspec-

ives due to its significant implications in diverse natural and man-

ade systems [1,2] . In particular, various types of synchronization,

ncluding complete synchronization (CS) where the coupled sys-

ems evolve identically, phase synchronization (PS) referring to the

ntrainment in the phase of the interacting systems while their

mplitude remains uncorrelated, and generalized synchronization

GS) where there exist some functional relation between the cou-

led systems, etc., have been identified. All these types of synchro-

ization have been investigated mainly in identical systems and

n systems with some parameter mismatch. Very occasionally, it

as been studied in distinctly nonidentical (structurally different)

ystems. But in reality, structurally different systems are predom-
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nant in nature and engineering and very often the phenomenon

f GS is responsible for their evolutionary mechanism and proper

unctioning of such structurally different systems. Typical exam-

les include the cooperative functions of brain, heart, liver, lungs,

imbs, etc., synchronization in living systems, coherent coordina-

ion of different parts of machines, synchronization between car-

iovascular and respiratory systems [3] , different populations of

pecies [4,5] , in epidemics [6,7] , in visual and motor systems [8,9] ,

n climatology [10,11] , in paced maternal breathing on fetal [12] ,

tc. Further, it has also been shown that GS is more likely to occur

n spatially extended systems and complex networks (even in net-

orks with identical nodes, due to the large heterogeneity in their

odal dynamics) [14–16] . In addition, GS has been experimentally

bserved in laser systems [17] , liquid crystal spatial light modula-

ors [18] , microwave electronic systems [19] and has applications

n secure communication devices [20,21] . Therefore understanding

he evolutionary mechanisms of many natural systems necessitates

he understanding of the underlying intricacies involved in the GS

henomenon. 

GS has been well studied and understood in unidirectionally

oupled systems [22–27] , but still it remains largely unexplored in

http://dx.doi.org/10.1016/j.chaos.2016.10.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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mutually coupled systems. Only a limited number of studies have

been carried out on GS in mutually coupled systems even with pa-

rameter mismatches [13–16,28–34] and rarely in structurally dif-

ferent dynamical systems with different fractal dimensions [35,36] .

Recent investigations have revealed that GS emerges even in sym-

metrically (mutually) coupled network motifs made of identical

systems, and that it also plays a vital role in achieving coherent be-

havior of the entire network [15,37] . As almost all natural networks

are heterogeneous in nature, the notion of GS has been shown to

play a vital role in their evolutionary mechanisms [2] . Therefore to

unravel the role of GS in the evolution of such a large networks,

it is crucial to understand the underlying dynamics involved in the

onset and emergence of GS in heterogeneous network motifs com-

posed of structurally different systems. It is also to be noted that

the notion of PS has been widely investigated in mutually coupled

essentially different (low-dimensional) chaotic systems [2] , while

the notion of GS in such systems has been largely ignored. 

The relation between PS and GS have been reported in low di-

mensional systems [38–40] and it has been shown that in gen-

eral GS always leads to PS in unidirectionally coupled chaotic sys-

tems. In contrast, PS may occur in cases where the coupled sys-

tems show no GS [38] attributing to the stronger nature of GS. Fur-

ther, Zhang and Hu [39] have demonstrated that GS is not neces-

sarily stronger than PS, and in some cases PS comes after GS with

increasing coupling strength depending upon the degree of param-

eter mismatch. They have concluded that PS (GS) emerges first for

low (high) degree of parameter mismatch and that they both occur

simultaneously for a critical range of mismatch in low-dimensional

systems [39] . An attempt to unify the concepts of PS an GS has

also been made in ref [40] . In addition, the transition from PS to

GS as a function of the coupling strength has been demonstrated

in coupled time-delay systems with parameter mismatch [41] . De-

spite these clear understanding on GS and PS transition in unidi-

rectionally coupled systems, to the best of our knowledge, the re-

lation between GS and PS in mutually coupled systems has not yet

been investigated so far. In general, the notion of GS and its re-

lation with PS in mutually coupled systems, particularly in struc-

turally different systems with different fractal dimensions includ-

ing time-delay systems, need much deeper understanding which

remains as a void in the literature. 

In line with the above discussion, we have reported briefly

the existence of GS in symmetrically coupled networks of struc-

turally different scalar one-dimensional time-delay systems using

the auxiliary system approach [42] . In this paper, we will extend

our investigations to non-scalar, higher dimensional heterogeneous

time-delay systems to examine whether GS can still persist be-

tween strongly heterogeneous systems (with different orders) and

to understand the underlying dynamical transitions. In particular,

in this paper we will demonstrate the emergence of a transition

from partial to global GS in mutually coupled structurally differ-

ent time-delay systems with different fractal (Kaplan–Yorke) di-

mensions and most importantly in systems with different orders

using the auxiliary system approach and the mutual false nearest

neighbor (MFNN) method. Here the term partial GS refers to the

state where only a few of the coupled systems are entrained to

the common GS mainfold, whereas the term global GS refers to

the state where all the coupled systems are in GS. In addition, we

have also provided a detailed explanation about structurally differ-

ent time-delay systems with different fractal dimensions and on

the attracting GS manifold. We use the Mackey–Glass (MG) [43] , a

piecewise linear (PWL) [41,44] , a threshold piecewise linear (TPWL)

[45] and the Ikeda time-delay [46] systems to construct strongly

heterogeneous network motifs. The main reason to consider time-

delay systems in this study is that even with a single time-delay

system, one has the flexibility of choosing systems with differ-

ent fractal dimensions just by adjusting their intrinsic delay alone,
hich is a quite attracting feature of time-delay systems from the

odeling point of view [47] . Further, time-delay occurred within

he systems are ubiquitous in several real situations. In particular,

ntrinsic time-delay can be found in neuronal models, where neu-

ons are connected to autapse (a self-synapse or a specialized con-

ection between a neuron and itself), which can be described by

ime-delayed feedback in closed loop [48–50] . In addition, intrin-

ic time-delay can also observed in ecology, epidemics, physiology,

hysics, economics, engineering and control systems, [1] which in-

vitably require delay for a complete description of the dynamical

ystem (note that an intrinsic delay is different from connection

elays which arise between different systems due to finite signal

ropagation time). Propagation delay induced synchronization in

ifferent types of networks has also been studied in detail in the

iterature [51–56] . 

In particular, we report that there exists a common GS manifold

ven in structurally different time-delay systems. In other words,

here exists a functional relationship even for systems with differ-

nt fractal dimensions, which maps them to a common GS man-

fold. Further, we also wish to emphasize that our results are not

onfined to just scalar one-dimensional time-delay systems alone

ut we confirm that there exists a similar type of synchroniza-

ion transition even in the case of time-delay systems of differ-

nt orders. Particularly, we demonstrate that the phenomenon of

S manifests in a system of Ikeda time-delay system (first order

ime-delay system) mutually coupled with a Hopfield neural net-

ork (a second order time-delay system), and in a system of a MG

ime-delay system (first order time-delay system) mutually cou-

led with a plankton model (a third order system with multiple

elays) to establish the generic nature of our results. Stability of GS

anifold in unidirectionally coupled systems is usually determined

y examining the conditional Lyapunov exponents of the synchro-

ization manifold [25,26] or the Lyapunov exponents of the cou-

led system itself [15] . Here, we will estimate the maximal trans-

erse Lyapunov exponent (MTLE) to determine the asymptotic sta-

ility of the CS manifold of each of the systems with their cor-

esponding auxiliary systems starting from different initial condi-

ions, which in turn asserts the stability of GS between the origi-

al structurally different time-delay systems. Further, we will also

stimate the cross correlation (CC) and the correlation of probabil-

ty of recurrence (CPR) to establish the relation between GS and PS

where GS and PS always occur simultaneously in structurally dif-

erent time-delay systems). CC essentially gives a much better sta-

istical average of the synchronization error, which is being widely

tudied to characterize CS. Further, CPR is a recurrence quantifi-

ation tool [57] , which effectively characterizes the existence of

S especially in highly non-phase-coherent hyperchaotic attractors

sually exhibited by time-delay systems [44] . It is also to be noted

hat the auxiliary system approach has some practical limitations.

his method fails for systems whose dynamical equations are not

nown and also CS between response and auxiliary systems arises

nly when their initial conditions are set to be in the same basin of

ttraction. Due to the above limitations of the auxiliary system ap-

roach, we have also calculated the MFNN which doubly confirms

ur results. 

The remaining paper is organized as follows: In Section 2 ,

e will describe briefly the notion of structurally different time-

elay systems with different fractal dimensions with examples. In

ection 3 we briefly describe the mathematical formulation of the

uxiliary system approach for mutually coupled structurally differ-

nt time-delay systems and in Sections 4 and 5 , we will demon-

trate the existence of a transition from partial to global GS in

 = 2 mutually coupled time-delay systems using the auxiliary

ystem approach and the MFNN method, respectively. Further, we

ill consider an array of N = 4 mutually coupled time-delay sys-

ems and discuss the occurrence of partial and global GS transition
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Table 1 

A list of abbreviations used in the paper. 

CS Complete Synchronization 

GS Generalized Synchronization 

PS Phase Synchronization 

MFNN Mutual False Nearest Neighbor 

MG Mackey–Glass 

PWL Piecewise Linear 

TPWL Threshold Piecewise Linear 

MTLE Maximal Transverse Lyapunov Exponent 

LE Lyapunov Exponent 

CC Cross Correlation 

CPR Correlation of Probability of Recurrence 

Table 2 

The parameter values, number of positive LEs and Kaplan–Yorke dimension 

( D KY ) of the structurally different time-delay systems. 

No System Choice of parameters No. of positive LEs D KY 

β i αi τ i 

1 MG 0 .5 1 .0 8 .5 2 2 .957 

2 PWL 1 .0 1 .2 10 .0 3 4 .414 

3 TPWL 1 .0 1 .2 7 .0 4 8 .211 

4 Ikeda 1 .0 5 .0 7 .0 5 10 .116 
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n Section 6 . The above synchronization transition in time-delay

ystems with different orders is demonstrated in Section 7 and fi-

ally we summarize our results in Section 8 . 

. Structurally different time-delay systems with different 

ractal dimensions 

In this section, we consider structurally different first order

calar time-delay systems with different fractal dimensions. Here,

tructurally different time-delay systems refer to systems exhibit-

ng chaotic/hyperchaotic attractors with different phase space ge-

metry characterized by different degrees of complexity. Despite

he similarity in the structure of their evolution equations, the na-

ure of chaotic attractors, the number of their positive LEs and

heir magnitudes characterizing the rate of divergence and the de-

ree of complexity as measured by the Kaplan-Yorke dimension

 D KY ) of the underlying dynamics are different even for the same

alue of time-delay because of the difference in the nonlinear

unctional form. 

As an illustration, first let us consider a symmetrically coupled

rbitrary network of structurally different scalar time-delay sys-

ems. Then the dynamics of the i th node in the network is rep-

esented as 

˙ 
 i = −αi x i (t) + βi f i (x i (t − τi )) − ε 

N ∑ 

j=1 

G i j x j , (1)

here i = 1 , . . . , N, and N is the number of nodes in the network,

i ’s and β i ’s are system’s parameters, τ i ’s are the time-delays, the

mooth continuous function of the i th node is defined as f i ( x i ), ε 
s the overall coupling strength and G is a Laplacian matrix which

etermines the topology of the arbitrary network. Here we have

tudied a linear array with open end boundary conditions. For the

G time-delay system, we choose the nonlinear function [43] 

f 1 (x (t − τ1 )) = 

x 1 (t − τ1 ) 

(1 + (x 1 (t − τ1 ) 10 )) 
, (2)

nd for the PWL system the nonlinear function is given as [41,44] 

f 2 (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , x ≤ −4 / 3 

−1 . 5 x − 2 , −4 / 3 < x ≤ −0 . 8 

x, −0 . 8 < x ≤ 0 . 8 

−1 . 5 x + 2 , −0 . 8 < x ≤ 4 / 3 

0 , x > 4 / 3 . 

(3) 

or the TPWL system we choose the form of the nonlinear function

s given by [45] 

f 3 (x ) = AF ∗ − Bx, (4)

ith 

 

∗ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−x ∗, x < −x ∗

x, −x ∗ ≤ x ≤ x ∗

x ∗, x > x ∗, 

(5) 

nd for the Ikeda time-delay system the nonlinear function is given

y [46] 

f 4 (x (t − τ4 )) = sin (x (t − τ4 )) . (6)

The parameter values for the above time-delay systems are cho-

en throughout the paper as follows (see Table 2 ): 

1) For the MG systems: We choose β1 = 0 . 5 , α1 = 1 . 0 , and τ1 =
8 . 5 ; 

2) For the PWL systems: We choose β2 = 1 . 0 , α2 = 1 . 2 , τ2 = 10 . 0 ,

p = 0 . 8 and p = 1 . 33 ; 
1 2 
3) The parameter values for the TPWL are fixed as β3 = 1 . 0 , α3 =
1 . 2 , τ3 = 7 . 0 , A = 5 . 2 , B = 3 . 5 and x ∗ = 0 . 7 and 

4) for the Ikeda time-delay system we choose β4 = 1 . 0 , α4 = 5 . 0 ,

τ4 = 7 . 0 . 

The hyperchaotic attractors of the uncoupled MG, PWL, TPWL

nd Ikeda time-delay systems are depicted in Figs. 1 (a)–(d), respec-

ively. The first few largest LEs of all the above four (uncoupled)

ime-delay systems are shown as a function of the time-delay τ
n Figs. 2 (a)–(d). It is clear from this figure that the number of

ositive LEs, and hence the complexity and dimension of the state

pace, generally increase with the time-delay. Further, the degree

f complexity, measured by their number of positive LEs of the dy-

amics (attractors) exhibited by all the four systems are distinctly

ifferent even for the same value of time-delay. In fact, we have

aken different values of delay for each of the systems, which are

ndicated by the arrows in Fig. 2 , to demonstrate the existence of

uitable smooth transformation that maps the strongly distinct in-

ividual systems to a common GS manifold. 

We wish to emphasize especially the structural difference, as

easured by their degree of complexity, between the hyperchaotic

ttractors of different scalar first order time-delay systems ( Fig. 1 )

hich we have employed in this paper, are detailed in Table 2 :

) the MG system has two positive LEs with D KY = 2 . 957 for τ1 =
 . 5 , 2) the PWL time-delay system has three positive LEs with

 KY = 4 . 414 for τ2 = 10 . 0 , 3) the TPWL time-delay system has four

ositive LEs with D KY = 8 . 211 for τ3 = 7 . 0 and 4) the Ikeda sys-

em has five positive LEs with D KY = 10 . 116 for τ4 = 7 . 0 . The above

acts clearly indicate that the real state space dimension explored

y the flow of a time-delay system, which is essentially infinite-

imensional in nature, and the associated degree of complexity

re characterized by the form of nonlinearity and the value of the

ime-delay irrespective of the similarity of the underlying evolu-

ion equations of the scalar first order time-delay systems. 

. Transition from partial to global GS in mutually coupled 

ime-delay systems: auxiliary system approach 

It has already been known that the functional relationship be-

ween two different systems in GS is generally difficult to iden-

ify analytically. However GS in such systems can be characterized

umerically by using various approaches, namely the mutual false

earest neighbor method [27] , the statistical modeling approach
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Fig. 1. Hyperchaotic attractors of (a) Mackey–Glass, (b) piecewise linear, (c) threshold piecewise linear and (d) Ikeda time-delay systems for the choice of the parameters 

given in Table 2 . 

Fig. 2. First few largest Lyapunov exponents of (a) Mackey–Glass, (b) piecewise linear, (c) threshold piecewise linear and (d) Ikeda time-delay systems, as a function of the 

time-delay τ . Arrows point the value of the time-delay we have considered in our analysis. The choice of the corresponding parameter values of all the four systems are 

given in Table 2 . 
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[58] , the phase tube approach [59] , the auxiliary system approach

[23] , etc. Among all these methods the auxiliary system approach

is extensively used to detect the presence of GS in unidirection-

ally coupled systems (both in numerical and experimental studies

due to its simple and powerful implementation). Abarbanel et al.

[23] first introduced this approach to characterize and confirm GS

in dynamical systems (when the system equations are known).

The mathematical formulation of this concept was put forward

by Kocarev and Parlitz [25] for a drive-response configuration in

low-dimensional systems. The formulation is based on the asymp-
otic convergence of the response and its auxiliary systems which

re identically coupled to the drive system, starting from two dif-

erent initial conditions from the same basin of attraction. The

symptotic convergence indeed ensures the existence of an attract-

ng synchronization manifold (CS manifold between the response

nd auxiliary systems and GS manifold between the drive and re-

ponse systems) [25] . In other words, GS between the drive x and

he response y systems occur only when the response system is

symptotically stable, that is ∀ y (0) & x (0) in the basin of the
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ynchronization manifold one requires lim t→∞ 

|| y (t, x (0) , y 1 (0)) −
 (t, x (0) , y 2 (0)) || = 0 . 

Now, we will extend this approach to a network for mutually

oupled systems. For simplicity, we consider two mutually coupled

tructurally different time-delay systems represented by 

˙  = f (x , x τ , u ) , and (7a) 

˙  = g (y , y τ , v ) , f � = g (7b) 

here x ∈ R 

n , x τ ∈ C ( R 

n ), y ∈ R 

m , y τ ∈ C ( R 

m ), τ ∈ R ( x τ =
 (t − τ ) , y τ = y (t − τ ) ) and u, v ∈ R 

k , k ≤ m, n . u i = −v i =
 i ( x (t, x 0 ) , y (t, y 0 ) ) correspond to the driving signals. In Eq. (7) ,

he functions f and g are continuously differentiable or even con-

inuous functions, and that their forms are such that there ex-

sts only well defined and bounded solution for it. System (7) is

n GS if there exists a transformation H such that the trajectories

f the systems (7a) and (7b) are mapped onto a subspace (syn-

hronization manifold) of the whole state space of Eq. (7) . We

lso note here that since we are dealing with GS of nonidenti-

al systems with different fractal dimensions, the transformation

unction H refers to a generalized transformation (not the iden-

ity transformation) and also there may exist a set of transforma-

ions H that maps a given x, x τ and y, y τ to different subspaces

f Eq. (7) [25] . This indicates that the synchronization manifold

 = { (x , y ) : H (x , y ) = 0 } is such that all the initial conditions

 ( ̂  τ ) , y ( ̂  τ ) , ̂  τ ∈ [ −τ, 0 ] , which lie within a subset of the basin of at-

raction B = B x ˆ τ × B y ˆ τ of Eq. (7) , approaches M ⊂ B so that M is an

ttracting manifold. Here B x ˆ τ and B y ˆ τ are the basins of attraction

f systems (7a) and (7b) , respectively. The synchronization mani-

old M can also be 

 = { (x , y ) : y = H (x ) } or M = { (x , y ) : x = H (y ) } (8)

s special cases, but without ambiguity M = H (x , y ) is the most

eneral one for mutually coupled systems. Hence, GS exists be-

ween the systems (7a) and (7b) only when both coupled systems

re asymptotically stable. That is, ∀ (x i ( ̂  τ ) , y i ( ̂  τ )) , ˆ τ ∈ [ −τ, 0 ] ⊂
, i = 1 , 2 , one requires [25] 

lim 

→∞ 

|| y (t, x 1 ( ̂  τ ) , y 1 ( ̂  τ )) − y (t, x 1 ( ̂  τ ) , y 2 ( ̂  τ )) || = 0 , (9a) 

lim 

→∞ 

|| x (t, x 1 ( ̂  τ ) , y 1 ( ̂  τ )) − x (t, x 2 ( ̂  τ ) , y 1 ( ̂  τ )) || = 0 . (9b) 

Lyapunov stability of an equilibrium means that solutions start-

ng “close enough” to the equilibrium (within a distance δ from it)

emain “close enough” forever (within a distance ε from it). Note

hat this must be true for any ε that one may want to choose.

symptotic stability means that solutions that start close enough

ot only remains close enough but also eventually converge to the

quilibrium. Thus, the asymptotic stability implies that it is Lya-

unov stable and there exists δ > 0 such that if ‖ x (0) − x e ‖ < δ,
hen lim t→∞ 

‖ x (t) − x e ‖ = 0 [60] . We note here that the possi-

ility of multi-valued GS occurring in our case is excluded be-

ause the main and the corresponding auxiliary systems are start-

ng from different initial conditions in the same basin of attrac-

ion. Further, it is worth to emphasize that a subharmonic en-

rainment takes place when there exists a relation between the

nteracting systems, which usually takes place for periodic syn-

hronization with m : n periods, m � = n [61] . But in this paper, the

ynchronization dynamics in all the cases we have considered ex-

ibits chaotic/hyperchaotic oscillations and hence the transforma-

ion function H refers to the existence of a function (not a re-

ation) in our case. Therefore the trajectories of Eq. (7) starting

rom the basin of attraction B asymptotically reach the synchro-

ization manifold M defined by the transformation function H ( x,

 ), which can be smooth if the systems (7) uniformly converge to
he GS manifold (otherwise nonsmooth). The uniform convergence

smooth transformation) is confirmed by negative values of their

ocal Lyapunov exponents of the synchronization manifold M [62] . 

Now, we will demonstrate the existence of a transition from

artial GS to global GS in symmetrically coupled arbitrary net-

orks of structurally different time-delay systems with different

ractal dimensions using the auxiliary system approach. We con-

ider a symmetrically coupled arbitrary network as given in Eq.

1) . To determine the asymptotic stability of each of the nodes in

his network, one can define a network (auxiliary) identical to Eq.

1) (starting from different initial conditions in the same basin of

ttraction), whose node dynamics is represented as 

˙  ′ i = −αi x 

′ 
i (t) + βi f i (x 

′ 
i (t − τi )) − ε 

N ∑ 

j=1 

G i j (x j − δi j x 

′ 
j ) . (10)

he parameter values are the same as in Eq. (1) discussed in

ection 2 . In the following sections, we will numerically investi-

ate the existence of transition from partial GS to global GS in

 = 2 and 4 systems with a linear array coupling configurations.

o obtain the numerical solution of time-delay systems, it is neces-

ary to convert the continuous evolution of an infinite-dimensional

ystem by a finite number of elements whose values change at

iscrete time steps. Hence to calculate the solution x ( t ) of a de-

ay differential equation for times greater than t , a function x ( t )

ver the interval ( t, t − τ ) must be given. This function can be op-

imally chosen by n samples taken at intervals �t = 

τ
n −1 . These n

amples can equivalently be thought of as the n variables of an n -

imensional discrete mapping [1] . In this way a continuous infinite

imensional dynamical system is replaced by a finite, but large, di-

ensional iterated map. 

. Transition from partial to global GS in N = 2 mutually 

oupled time-delay systems 

To start with, we consider a linear array of N = 2 mutually cou-

led structurally different time-delay systems. The state equations

an be represented as 

˙ 
 1 = −α1 x 1 (t) + β1 f 1 (x 1 (t − τ1 )) + ε(x 2 − x 1 ) , (11a) 

˙ 
 2 = −α2 x 2 (t) + β2 f 2 (x 2 (t − τ2 )) + ε(x 1 − x 2 ) . (11b) 

The corresponding dynamical equation for the auxiliary systems

an be given as 

˙ 
 

′ 
1 = −α1 x 

′ 
1 (t) + β1 f 1 (x ′ 1 (t − τ1 )) + ε(x 2 − x ′ 1 ) , (12a) 

˙ 
 

′ 
2 = −α2 x 

′ 
2 (t) + β2 f 2 (x ′ 2 (t − τ2 )) + ε(x 1 − x ′ 2 ) . (12b) 

We choose the MG time-delay systems (system x 1 and x ′ 
1 
) with

he nonlinear function f 1 ( x ) given in Eq. (2) and the PWL sys-

ems (system x 2 and x ′ 
2 
) with the nonlinear function f 2 ( x ) given

n Eq. (3) . The parameters of both systems are fixed as given

n Section 2 ( Table 2 ) and for those parameter values both sys-

ems exhibit hyperchaotic attractors [ Figs. 1 (a) and 1 (b)] with two

 Fig. 2 (a)] and three [ Fig. 2 (b)] positive LEs, respectively. 

Generally, in a mutual coupling configuration the systems affect

ach other and attain a common synchronization manifold simul-

aneously above a threshold value of the coupling strength ε. But

nterestingly in structurally different coupled time-delay systems

ith different fractal dimensions, one of the systems first reaches

he GS manifold for a lower value of ε, while the other one re-

ains in a desynchronized state, which we call as a partial GS

tate. For a further increase in ε both systems organize themselves

nd reach a common GS manifold, thereby achieving a global GS.
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Fig. 3. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems for two mu- 

tually coupled MG-PWL systems as a function of ε ∈ (0.0, 0.6) for N = 2 ( 11 and 

12 ). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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In other words, when system x 1 and x ′ 
1 

are identically synchro-

nized, system x 1 is synchronized to a subspace (synchronization

manifold) of the whole state space of both systems in a general-

ized sense, which we call as a partial GS. Similarly, when the sys-

tems x 2 and x ′ 
2 

are synchronized identically, then system x 2 is syn-

chronized to the common synchronization manifold. This corrobo-

rates that both systems x 1 and x 2 share a common GS manifold.

Thus, when both auxiliary systems are completely synchronized

with their original systems for an appropriate coupling strength,

then there exists a function that maps systems x 1 and x 2 to the

common (global) GS manifold. 

In order to characterize the transition from partial to global GS

and to evaluate the stability of the CS of each of the main and

auxiliary systems, we have calculated the MTLEs of the main and

auxiliary systems which in turn ensure the stability of GS manifold

between the original systems. We have also estimated the correla-

tion coefficient (CC) of each of the main and the associated auxil-

iary systems, given by 

 i,i ′ = 

〈 (x i (t) − 〈 x i (t) 〉 )(x ′ 
i 
(t) − 〈 x ′ 

i 
(t) 〉 ) 〉 √ 〈 (x i (t) − 〈 x i (t) 〉 ) 2 〉〈 (x ′ 

i 
(t) − 〈 x ′ 

i 
(t) 〉 ) 2 〉 , (13)

where the 〈 . . . 〉 brackets indicate temporal average. If the two sys-

tems are in CS state, the correlation coefficient CC ≈ 1, otherwise

CC < 1. Further, the existence of PS (between the main and auxil-

iary systems) can be characterized by the value of the index CPR

which can be defined as 

P R = 〈 ̄P 1 (t) ̄P 2 (t) 〉 /σ1 σ2 , (14)

where P ( t ) is the recurrence-based generalized autocorrelation

function defined as 

P (t) = 

1 

N − t 

N−t ∑ 

i =1 

	(ε − || X i − X i + t || ) . (15)

Here 	 is the Heaviside function, X i is the i th data point of the

system X , ε is a predefined threshold, ||.|| is the Euclidean norm,

and N is the number of data points, P̄ 1 , 2 means that the mean

value has been subtracted and σ 1, 2 are the standard deviations of

P 1 ( t ) and P 2 ( t ), respectively. CPR is a recurrence quantification tool

mainly used to characterize the phase synchronization in highly

non-phase coherent hyperchaotic attractors [57] . If the phases of

the coupled systems are mutually locked, then the probability of

recurrence is maximal at a time t and CPR ≈ 1, otherwise the max-

ima do not occur simultaneously and hence one can expect a drift

in both the probability of recurrence resulting in low values of CPR

[44,57] . 

The coupled Eqs. (11) and (12) , with the nonlinear functions f 1 
and f 2 as given in Eqs. (2) and (3) , respectively, are integrated using

a Runge-Kutta fourth order method. The MTLEs are the largest Lya-

punov exponents of the evolution equation of ˙ �i ≡ ˙ x i − ˙ x ′ 
i 
, i = 1 , 2 .

The Lyapunov exponents are calculated using J. D. Farmer’s ap-

proach [1] . In Fig. 3 , we have plotted the various characterizing

quantities based on our numerical analysis. The red (light gray)

continuous line in Fig. 3 (a) shows the MTLE ( λ(1) 
MT LE 

) of the MG

systems (x 1 , x 
′ 
1 
) and the blue (dark gray) dotted line depicts the

MTLE ( λ(2) 
MT LE 

) of the PWL systems (x 2 , x 
′ 
2 
) as a function of the

coupling strength. Fig. 3 (b) shows the CC and CPR of the main

and auxiliary MG time-delay systems as red (light gray) filled and

open circles, respectively, and the CC and CPR of the PWL sys-

tems are represented by the blue (dark gray) filled and open trian-

gles. Initially, for ε = 0 , both CC 1 , 1 ′ and CC 2 , 2 ′ are nearly zero, indi-

cating the desynchronized state when both λ(1) 
MT LE 

and λ(2) 
MT LE 

> 0

which confirm that CS (GS) is unstable. If we increase the cou-

pling strength, CC 2 , 2 ′ and CP R 2 , 2 ′ start to increase towards unity

and at ε (2) 
c ≈ 0 . 26 , C C 2 , 2 ′ = 1 ( C P R 2 , 2 ′ = 1 ), where λ(2) 

MT LE 
< 0 , which
onfirm the simultaneous existence of GS and PS in the PWL sys-

em, while the MG system continues to remain in a desynchro-

ized state ( CC 2 , 2 ′ ≈ 0 . 2 and λ(1) 
MT LE 

> 0 ) (partial GS). Further, if we

ncrease the coupling strength to a threshold value ε (1) 
c ≈ 0 . 5 , a

lobal GS occurs where both CC 1 , 1 ′ and CC 2 , 2 ′ become unity and
(1) 
MT LE 

and λ(2) 
MT LE 

become negative. The transition of the MTLE of

he auxiliary and its original systems from positive to negative val-

es as a function of the coupling strength strongly confirms the ex-

stence of an attracting manifold. To be more clear, for the value of

he coupling strength in the range of global GS, a negative value of

he MTLE assures the convergence of the perturbed trajectories in

he synchronization manifold (CS between the main and auxiliary

ystems and GS manifold between the main systems). The con-

ergence corroborates the attracting nature of the synchronization

anifold. Further, normally one may expect that the systems with

ower dynamical complexity will converge to the GS manifold first,

ollowed by the system with higher dynamical complexity [34] . But

o our surprise, we encounter a contrary behavior, where the PWL

ystem with three positive LEs reaches the GS manifold first (at

 

(2) 
c ≈ 0 . 26 ) and then the MG system (with two positive LEs) con-

erges to the GS manifold at ε (1) 
c ≈ 0 . 5 confirming the existence of

 transition from partial to global GS in structurally different time-

elay systems . We have also numerically computed the synchro-

ization error ( �x i,i ′ (t) = | x i (t) − x ′ 
i 
(t) | , i = 1 , 2 ) and phase pro-

ection plots, which are depicted in Figs. 4 and 5 , respectively. In

he absence of the coupling all the systems evolve with their own

ynamics. If we slowly increase the coupling strength the main

nd the auxiliary PWL systems become completely synchronized

or ε (2) 
c = 0 . 26 . The synchronization error �x 2 , 2 ′ (t) = 0 and the

inear relation between the systems (x 2 , x 
′ 
2 
) in Figs. 4 (b) and 5 (b)

plotted for ε (2) = 0 . 3 ), respectively, confirm that the systems x 2 
nd x ′ 

2 
are in a CS state, whereas the MG systems (x 1 , x 

′ 
1 
) remain

esynchronized as confirmed by the phase projection [ Fig. 5 (a)] for

he same value of the coupling strength. We also note here that for

his value of coupling strength the systems x 1 and x 2 show certain

egree of correlation as depicted in Fig. 5 (c). If we increase ε fur-

her, both sets of systems ( x 1 , x 
′ 
1 
) and ( x 2 , x 

′ 
2 
) reach the CS manifold

for ε (1) 
c = 0 . 5 ) and one may expect that both x 1 and x 2 attain the

ommon GS manifold, which we call as global GS. Both the syn-

hronization errors �x 1 , 1 ′ (t) and �x 2 , 2 ′ (t) become zero as shown

n Figs. 4 (c) and (d) for ε (1) = 0 . 55 . This fact confirms the existence

f a global GS state. Further, Figs. 5 (d) and (e) show a linear rela-

ion between the systems ( x 1 , x 
′ 
1 
) and ( x 2 , x 

′ 
2 
), respectively, which

dditionally confirms the existence of global GS. The degree of cor-

elation in the phase space between the systems x and x for the
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Fig. 4. (a, b) The magnitude of difference in the trajectories between the systems ( �x i,i ′ = | x i − x ′ 
i 
| , i = 1 , 2 ) for ε (2) = 0 . 3 , and (c, d) for ε (1) = 0 . 55 for N = 2 mutually 

coupled MG and PWL systems. 

Fig. 5. (a–c) The phase portraits of the systems ( x 1 , x 
′ 
1 ), ( x 2 , x 

′ 
2 ) and ( x 1 , x 2 ) for ε (2) = 0 . 3 , and (d–f) for ε (1) = 0 . 55 for N = 2 . 
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Fig. 6. Phase diagram in the ( β2 − ε) plane for two mutually coupled MG-PWL sys- 

tems showing partial (blue/dark gray), global (light gray) GS and desynchronization 

(white) regimes. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

l  

e  
lobal GS state is depicted in Fig. 5 (f) for the same value of cou-

ling strength. 

To obtain a global picture on the transition from partial to

lobal GS between the MG and PWL systems, we have plotted the

alues of CC i,i ′ as a 2-parameter diagram in the ( β2 − ε) plane. We

ave fixed the parameter values of the MG systems (as given in

ection 2 ) and vary one of the parameter ( β2 ∈ (1.1, 1.3)) of the

WL system as a function of the coupling strength ( ε ∈ (0.1, 0.6))

s depicted in Fig. 6 . The white region indicates the desynchro-

ized state and the blue (dark gray) region corresponds to the par-

ial GS region, where only one of the mutually coupled systems has

eached the common GS manifold as indicated by the unit value

f the CC i,i ′ . The global GS is represented by light gray where both

oupled systems are in GS manifold as confirmed by the unit value

f CC i,i ′ of both systems. 

We note here that for larger values of the nonlinear parameter

2 of the PWL system, it needs larger values of coupling strength

o attain partial GS whereas global GS is achieved for even smaller

oupling strengths than that at lower values of β2 . This is due to

he fact that when we increase the value of β2 ∈ (1.1, 1.3), the

omplexity of the PWL system increases and so it requires a larger

oupling strength to attain partial GS (blue/dark grey region in

ig. 6 ). At the same time, due to the increase in the complexity

f the PWL system, it can easily tame the chaotic/hyperchaotic na-

ure of the MG system to reach the common GS manifold even for
 i
ower values of ε than before (light gray region in Fig. 6 ). It is to be

mphasized that during the synchronized state the systems remain

n chaotic/hyperchaotic region in the above parameter space. 
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Fig. 7. MFNN parameter ( p ) as a function of coupling strength ( ε) showing global 

GS state for N = 2 mutually coupled MG-PWL time-delay systems (corresponding to 

Fig. 3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) MTLEs and (b) CC, CPR of the main and auxiliary systems for N = 4 struc- 

turally different time-delay systems with linear array configuration as a function of 

ε. 

Fig. 9. MFNN parameter ( p ) for the linear array of mutually coupled systems with 

N = 4 as a function of the coupling strength showing the global GS state (corre- 

sponding to Fig. 8 ). 
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5. Detection of global GS using the mutual false nearest 

neighbor method 

Next, we use the mutual false nearest neighbor method to con-

firm the existence of global GS in distinctly different time-delay

systems. The main idea of this technique consists of the fact of

preserving the local neighborliness between the states of the in-

teracting systems [27] . Let us consider the trajectories of two sys-

tems which are connected by the relation y (t) = φ(x (t)) (condition

for GS). The MFNN method depends on the observation that in GS

state two neighboring points in the phase space of the drive sys-

tem x ( t ) correspond to two neighboring points in the phase space

of the response system y ( t ). For mutually coupled systems, the in-

verse statement is also valid. That is, all close states in the phase

space of the system y ( t ) must correspond to close states of the sys-

tem x ( t ). 

Let us consider a set of embedded vector points (obtained

by attractor reconstruction using time-delay embedding methods

[63,64] ) in the spaces of the drive ( X 1 , X 2 , ���) and response ( Y 1 ,

Y 2 , ���) systems coming from finite segments of the trajectories

sampled at uniform intervals of time. Now we can choose an ar-

bitrary point X n in the phase space of the drive system. Let the

nearest phase space neighbor of this point in the reconstructed

attractor be X nNND . In GS state, one can also expect that the cor-

responding points of the response system Y n will have Y nNND as

its close neighbor. From the GS relation, the distance between the

two nearest neighbors in the phase space of the response system

can be written as Y n − Y nN N D = Dφ(X n )(X n − X nN N D ) , where D φ( X n )

is the Jacobian matrix of the transformation φ evaluated at X n .

Similarly, we consider the point Y n and locate its nearest neighbor

from the time series as Y nNND . Again using the GS relation, the dis-

tance between the points of the response variables can be written

as Y n − Y nN N R = Dφ(X n )(X n − X nN N R ) . This suggests that the ratio for

the MFNN parameter p can be written as, 

p = 

1 

T 

∑ 

n 

| Y n − Y nN N D | | X n − X nN N R | 
| X n − X nN N D | | Y n − Y nN N R | , (16)

where T is the sampling time. In GS state the MFNN parameter p

will be of the order of unity. This method has been widely used to

identify GS in mutually coupled systems. 

The MFNN parameter ( p ) for two mutually coupled MG and

PWL time-delay systems is depicted in Fig. 7 (corresponding to

Fig. 3 ). As can be seen from this figure the value of p becomes

close to unity above ε > 0.5, which is indeed the critical coupling

strength ε (1) 
c in Fig. 3 , strongly confirming the existence of global

GS. 

6. Transition from partial to global GS in N = 4 mutually 

coupled time-delay systems 

Further, in this section, we demonstrate the existence of tran-

sition from partial to global GS in four (only in N = 4 for clear

visibility of figures depicting synchronization transitions) mutually

coupled structurally different time-delay systems in a linear array.
n addition to the above two time-delay systems discussed in the

revious sections, as the third and fourth systems, we consider the

PWL time-delay system with the nonlinear function given in Eq.

4) and the Ikeda time-delay system with the nonlinear function

s in Eq. (6) . The system parameters are fixed as in Section 2 . For

his chosen set of parameter values the TPWL system exhibits a hy-

erchaotic attractor ( Fig. 1 (c)) with four positive LEs ( D KY = 8 . 211 )

see Fig. 2 (c)] and the Ikeda time-delay system exhibits a hyper-

haotic attractor [ Fig. 1 (d)] with five positive LEs [ Fig. 2 (d)] with

 KY dimension D KY = 10 . 116 . We demonstrate the existence of a

ransition from partial to global GS in four mutually coupled time-

elay systems (MG, PWL, TPWL and Ikeda) in a linear array config-

ration. In Figs. 8 (a) and (b), we have again presented the char-

cterizing quantities λ(i ) 
MT LE 

, CC i,i ′ and CP R i,i ′ , i, i ′ = 1 , 2 , 3 , 4 of all

he four systems along with their associated auxiliary systems as

 function of the coupling strength. For ε = 0 , λ(i ) 
MT LE 

> 0 , while

C i,i ′ and CP R i,i ′ show low values corresponding to a desynchro-

ized state. At ε (2) 
c = 0 . 09 and ε (1) 

c = 0 . 4 , λ(2) 
MT LE 

of the PWL system

nd λ(1) 
MT LE 

of the MG system become negative, respectively, which

onfirm that these systems reach the CS (GS) state with their cor-

esponding auxiliary (main) systems, whereas the other two sys-

ems are not yet synchronized ( λ(3 , 4) 
MT LE 

> 0 ). Increasing the coupling

trength, we find that at ε (4) 
c = 0 . 54 the Ikeda system with five

ositive LEs attain the CS (GS) manifold when λ(4) 
MT LE 

< 0 and finally

he TPWL system becomes synchronized at ε (3) 
c = 1 . 2 , confirming

he transition from partial to global GS in four mutually coupled

ime-delay systems in an array configuration. The C C i,i ′ and C P R i,i ′ 
f the corresponding systems show a clear transition to unit value

or their corresponding threshold values of ε (i ) 
c confirming the si-

ultaneous existence of GS and PS [ Fig. 8 (b)]. 

We have again calculated the MFNN parameter ( p ) for N = 4

utually coupled linear array of time-delay systems by considering

he MG time-delay system as a reference system (we obtained sim-

lar results when we consider any other system as a reference sys-

em) as depicted in Fig. 9 . The unit value of the MFNN parameter

 of the respective ε (i ) 
c values of PWL, TPWL and Ikeda time-delay
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ystems (with respect to the MG time-delay system) confirms the

xistence of the transition from partial to global GS . 

Further, we have identified that there exists a similar type of

ynchronization transition in other regular network configurations

ike ring, star and global coupling architectures [42] and confirmed

hat there exists a common GS manifold, where all the systems

hare to display a global GS, despite their strong heterogeneous

ature. In addition, we have also confirmed these synchronization

ransitions in other permutations on the order of the systems be-

ween MG, PWL, TPWL and Ikeda systems in all coupling configu-

ations. We also wish to emphasize that the synchronization phe-

omenon examined in our paper is robust against the parameter

hoice of the dynamical systems. 

. Transition from partial to global GS in time-delay systems of 

ifferent orders 

Now, we will demonstrate the genericity of the transition from

artial to global GS by revealing it in coupled time-delay systems

f different orders so as to prove that the reported phenomenon

s not restricted to time-delay equations with structural similarity

lone. In particular, we will show the existence of a transition to

lobal GS via partial GS in such systems using the measures CC

nd CPR along with the MFNN parameter. We will demonstrate the

bove results for the following coupled systems. 

1. In a system consisting of a mutually coupled Ikeda time-delay

system (which is a scalar first order time-delay system) and

a Hopfield neural network [1,65,66] (which is a second order

time-delay system), and 

2. In a system of mutually coupled MG time-delay system (which

is a scalar first order time-delay system) and a plankton model

[67,68] (which correspond to a third order system with multiple

delays), 

A class of delayed chaotic neural networks [1,65,66] can be rep-

esented as a set of coupled DDEs as given by the equation 

˙ 
 (t) = −Cx (t) + A f [ x (t) ] + B f [ x (t − τ ) ] , (17)

here x (t) = [ x 1 (t) , x 2 (t ) , · · · , x n (t ) ] 
T ∈ R n is the state vector, the

ctivation function f [ x (t) ] = ( f 1 [ x 1 (t) ] , f 2 [ x 2 (t) ] , · · · , f n [ x n (t) ] ) 
T 

enotes the manner in which the neurons respond to each other.

 is a positive diagonal matrix, A = (a i j ) , i, j = 1 , 2 , · · · , n is the

eedback matrix, B = (b i j ) represents the delayed feedback matrix

ith a constant delay τ . The general class of delayed neural

etworks represented by the above Eq. (17) unifies several well

nown neural networks such as the Hopfield neural networks and

ellular neural networks with delay. 

The specific set of delayed neural network ( Eq. (17) ) which cor-

esponds to the Hopfield neural network is for the choice of the

ctivation function 

f [ x (t) ] = tanh [ x (t) ] , (18) 

nd for the value of the matrices 

 = 

[
1 0 

0 1 

]
, A = 

[
2 . 0 −0 . 1 

−5 . 0 3 . 0 

]
, B = 

[−1 . 5 −0 . 1 

−0 . 2 −2 . 5 

]
. 

(i) First we will illustrate the existence of global GS via partial

S in a coupled system consisting of an Ikeda time-delay system,

hich is mutually coupled to a Hopfield neural network. Mutual

oupling is introduced in the x 1 ( t ) variable of higher order sys-

ems. The CC and CPR between the main and auxiliary systems

re depicted in Fig. 10 (a). Low values of CC and CPR in the ab-

ence of coupling indicates an asynchronous behavior of both sys-

ems. Upon increasing the coupling strength from zero, the sec-

nd order system, that is the Hopfield neural network, reaches the
ommon synchronization manifold first (partial GS) at the thresh-

ld value of ε (2) 
c ≈ 0 . 05 as indicated by the unit value of the cross

orrelation coefficient CC 2 , 2 ′ , while the Ikeda system remains in its

ransition state (partial GS state). The simultaneous existence of

hase synchronization (PS) together with GS is also confirmed by

he unit value of CP R 2 , 2 ′ at the same ε (2) 
c . Further increase in the

oupling strength results in the synchronization (both GS and PS)

f the Ikeda system to the common synchronization manifold for

 

(1) 
c ≈ 1 . 32 as evidenced from the unit value of CC 1 , 1 ′ and CP R 1 , 1 ′ 
 Fig. 10 (a)] confirming the existence of global GS via partial GS in

oupled systems of different orders. 

We have also calculated the MFNN parameter for the Ikeda sys-

em and the Hopfield neural network as a function of the cou-

ling strength, which is depicted in Fig. 10 (b) (corresponding to

ig. 10 (a)). It is evident from this figure that the MFNN parame-

er p reaches the unit value at ε ≈ 1.32 perfectly agreeing with

he threshold value indicated by CC and CPR confirming the ex-

stence of global GS in mutually coupled Ikeda time-delay system

nd Hopfield neural network. 

(ii) Next, we illustrate the transition from partial to global GS in

utually coupled MG time-delay system, and a third order plank-

on model [67,68] with multiple delays. The normalized system of

quations of a zoo-plankton model is represented as 

˙ 
 = ax [1 − (x + y )] − xy − l 1 xz, (19a) 

˙ 
 = xy − b 2 y − l 2 yz, (19b) 

˙ 
 = −b 1 z + l 1 x (t − τ1 ) z(t − τ3 ) + l 2 y (t − τ2 ) z(t − τ3 ) −n (x + y ) z, 

(19c)

here a = 15 . 0 , b 1 = 1 . 0 , b 2 = 0 . 2 , l 1 = 9 . 0 , l 2 = 13 . 5 and n = 2 . 0

re constants. The delays τ 1 , τ 2 and τ 3 are in general different,

ut for simplicity we have considered identical delays, τ1 = τ2 =
3 = 5 . 0 , as studied in Ref [68] . Here x, y and z are the normal-

zed quantities of the density of the susceptible phytoplankton, in-

ected phytoplankton and zooplankton (predator species), respec-

ively. Low values of CC and CPR for ε = 0 between the main and

uxiliary systems as shown in Fig. 11 (a) confirm that the systems

volve independently in the absence of coupling between them.

s the coupling strength is increased the plankton model synchro-

izes first to the common synchronization manifold at ε (1) 
c ≈ 0 . 21

s denoted by CC 1 , 1 ′ = 1 . 0 indicating partial GS [ Fig. 11 (a)]. PS has

lso occurred simultaneously at the same threshold value of ε (1) 
c as

ndicated by the unit value of CP R 1 , 1 ′ . Further increase in ε leads

o the existence of global GS by synchronizing the MG time-delay

ystem to the common synchronization manifold as both CC 2 , 2 ′ 
nd CP R 2 , 2 ′ attain unity at ε (2) 

c ≈ 0 . 44 . The MFNN parameter in

ig. 11 (b) also reaches the unit value at ε ≈ 0.44 additionally con-

rms the occurrence of global GS state. 

Hence, it is elucidated that the transition from partial to global

S phenomenon is not restricted to first order structurally different

ime-delay systems alone but it is also valid for time-delay systems

ith different orders. 

. Conclusion 

In conclusion, we have pointed out the existence of a synchro-

ization transition from partial to global GS in structurally differ-

nt time-delay systems in symmetrically coupled systems with lin-

ar array configuration using the auxiliary system approach and

he mutual false nearest neighbor method. We have shown that

here exists a smooth transformation function even for networks

f structurally different time-delay systems with different fractal

imensions, which maps them to a common GS manifold. We have
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Fig. 10. (a) CC and CPR of the main and auxiliary systems and (b) MFNN parameter ( p ) of a coupled Ikeda time-delay system and Hopfield neural network. 

Fig. 11. (a) CC and CPR of the main and auxiliary systems and (b) MFNN parameter of a coupled Mackey–Glass time-delay system and the plankton model (19) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also found that GS and PS occur simultaneously in structurally dif-

ferent time-delay systems. We have calculated MTLEs to evaluate

the asymptotic stability of the CS manifold of each of the main and

the corresponding auxiliary systems. This in turn, ensures the sta-

bility of the GS manifold between the main systems. In addition,

we have estimated the CC and the CPR to characterize the relation

between GS and PS. Further, to prove the genericity of our results,

we have demonstrated the synchronization transition in systems

with different orders such as coupled MG and the Hopfield neural

network model and a system of coupled Ikeda and plankton mod-

els. We would like to emphasize that now we are working on the

experimental realization of the existence of partial and global GS

in structurally different time-delay systems using nonlinear time-

delayed electronic circuits. 
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